For convenience.

Greek Alphabet

letter code letter code
$\alpha$ \alpha $\nu$ \nu
$\beta$ \beta $\xi$ \xi
$\gamma$ \gamma $\omicron$ \omicron
$\delta$ \delta $\pi$ \pi
$\epsilon$ \epsilon $\rho$ \rho
$\zeta$ \zeta $\sigma$ \sigma
$\eta$ \eta $\tau$ \tau
$\theta$ \theta $\upsilon$ \upsilon
$\iota$ \iota $\phi$ \phi
$\kappa$ \chi $\chi$ \chi
$\lambda$ \lambda $\psi$ \psi
$\mu$ \mu $\omega$ \omega
$A$ A $B$ B
$\Gamma$ \Gamma $\Delta$ \Delta
$\Lambda$ \Lambda $\Xi$ \Xi
$\Pi$ \Pi $\Upsilon$ \Upsilon
$\Phi$ \Phi $\Psi$ \Psi
$\varepsilon$ \varepsilon $\vartheta$ \vartheta
$\varkappa$ \varkappa $\varpi$ \varpi
$\varsigma$ \varsigma $\varphi$ \varphi
$\varrho$ \varrho $\boldsymbol{\alpha}$ \boldsymbol{\alpha}

Mathematics

character code example
parentheses ( (
large parentheses $\left( \right.$ \left( \left and \right must be in pairs.
If you want to hide one, substitute it with.. e.g.: \right..
fraction \frac{}{} or \over \frac{1}{2} ; zx\over(2z+1).
extraction of a root \sqrt[]{} $\sqrt[2]{3}$: \sqrt[2]{3}.
vector \vec{} $\vec{a}$: \vec{a}
integration \int_{}^{} $\int_0^{a+b}x^2{\rm d}x$ : .
limit \lim_{} ${\lim{x\to \infty}\frac{1}{x}}$ : {\lim{x\to \infty}\frac{1}{x}}.
accumulation \sum_{}^{} $\sum{1}^{n^2}$ : \sum{1}^ {n^2}.
multiplicative \prod_{}^{} $\prod{1}^{n^2}$ : \prod{1}^ {n^2}.
character code character code
$\pm$ \pm $\emptyset$ \emptyset
$\times$ \times $\notin$ \notin
$\div$ \div $\subset$ \subset
$\mid$ \mid $\supset$ \supset
$\cdot$ \cdot $\subseteq$ \subseteq
$\circ$ \circ $\supseteq$ \supseteq
$\ast$ \ast $\bigcap$ \bigcap
$\bigodot$ \bigodot $\bigcup$ \bigcup
$\bigotimes$ \bigotimes $\bigvee$ \bigvee
$\bigoplus$ \bigoplus $\bigwedge$ \bigwedge
$\leq$ \leq $\biguplus$ \biguplus
$\geq$ \geq $\bigsqcup$ \bigsqcup
$\neq$ \neq $\log$ \log
$\approx$ \approx $\ln$ \ln
$\equiv$ \equiv $x^\circ$ x^\circ
$\sum$ \sum $y\prime$ y\prime
$\prod$ \prod $\int$ \int
$\coprod$ \coprod $\iint$ \iint
$\in$ \in $\iiint$ \iiint
$\oint$ \oint $\lim$ \lim
$\infty$ \infty $\nabla$ \nabla
$\because$ \because $\therefore$ \therefore
$\forall$ \forall $\exists$ \exists
$\not>$ \not> $\not\subset$ \not\subset
$\hat{x}$ \hat{x} $\check{x}$ \check{x}
$\breve{x}$ \breve{x} $\overline{a+b}$ \overline{a+b}
$\underline{a+b}$ \underline{a+b} $\overbrace{a+b}$ \overbrace{a+b}
$\underbrace{a+b}$ \underbrace{a+b} $\uparrow$ \uparrow
$\Uparrow$ \Uparrow $\downarrow$ \downarrow
$\Downarrow$ \Downarrow $\rightarrow$ \rightarrow
$\Rightarrow$ \Rightarrow $\leftarrow$ \leftarrow
$\longleftarrow$ \longleftarrow $\Longleftarrow$ \Longleftarrow
$\aleph$ \aleph $\beth$ \beth
$\gimel$ \gimel $\daleth$ \daleth

Special font

  • chalkboard font

    $\mathbb{ABCDEFGH}$ : .

  • bold font

    $\mathbf{ABCD12345}$ : .

  • oblique font

    $\mathit{ABCDEFG}$ : .

  • roman type

    $\mathrm{ABCDEFG}$ : .

  • goth type

    $\mathfrak{012345ABCDE}$ : $\mathfrak{012345ABCDE}$.

  • handwriting font

    $\mathcal{ABCDEFG}$ : $\mathcal{ABCDEFG}$.

or

\begin{matrix}
a & b & c \
d & e & f
\end{matrix}

\begin{bmatrix}
a & b & c \
d & e & f
\end{bmatrix}

\begin{bmatrix}
a & b & c \
d & e & f
\end{bmatrix}

\begin{matrix}
\begin{aligned}
& =u \
& \rightarrow min, d \geq 0, e \geq 0
\end{aligned}
\end{matrix}

$$

#

markdown emoji markup.